

INDICE

ESPECIALISTAS EN TUBERIAS Y FITTINGS DE POLIFICIPALEND Y PEX. POLIFUSION—BETA PP RCT

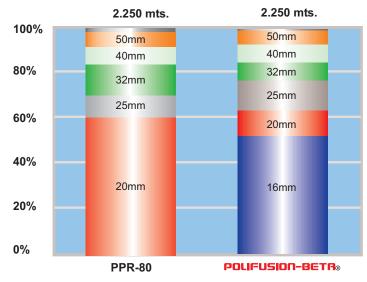
IGENERALIDADES		PAG. 2	
IIBENEFICIOS Y CARACTERISTICAS DE LAS TUBERIAS POLIFUSION-BETR ®PP-RCT		PAG. 2	ш
IIIPROPIEDADES		PAG. 3	
IVNORMAS Y CERTIFICACIONES		PAG. 3	
VCARACTERISTICAS DE NUESTRAS TUBERIAS POLIFUSION-BETA®PP-RCT		PAG. 4	П
VIPOLIFUSION-BETA, LA ELECCION CORRECTA		PAG. 6	Ш
VIIVIDA UTIL, SISTEMA POLIFUSION-BETR ®PP-RCT		PAG. 8	m
VIIIDILATACION TERMICA		PAG. 9	
IXCALCULO DE BRAZO DILATANTE		PAG. 10	c
XINSTALACION DE TUBERIAS VERTICALES CON TEMPERATURA		PAG. 11	
XITUBERIAS VERTICALES A LA VISTA		PAG. 12	
XIIINSTALACION DE TUBERIAS HORIZONTALES CON TEMPERATURA		PAG. 12	
XIIIINSTALACION DE TUBERIAS DESDE UN SHAFT A UN DEPARTAMENTO		PAG. 13	
XIVINSTALACIONS DE TUBERIAS EMBUTIDAS		PAG. 13	ON I
XVTRANSPORTE DE K. CAL/HORA PARA DISTINTAS VELOCIDADES		PAG. 14	
XVITRANSPORTE DE K·CAL/HORA PARA DISTINTOS DIFERENCIALES DE TEMPERA	TURA	PAG. 14	
XVIIPERDIDAS DE CARGA TUBERIAS Y FITTINGS		PAG. 15	
XVIIIDIAGRAMA DE PERDIDA DE CARGA PARA TUBERIAS POLIFUSION-BETR ®PP-RCT \$4 (I	2N12,5)	PAG. 16	7
XIXDIAGRAMA DE PERDIDA DE CARGA PARA TUBERIAS POLIFUSION-BETR ®PP-RCT \$ 3,2	(PN16)	PAG. 17	
XXCOEFICIENTE DE PERDIDA SINGULARES DE LOS FITTINGS (K)		PAG. 18	OP
XXITERMOFUSION, UNION MOLECULAR DE TUBERIAS Y FITTINGS		PAG. 20	1.0
XXIITABLA DE RESISTENCIA QUIMICA POLIFUSION-BETA		PAG. 22	N D
XXIIITUBERIAS- FITTINGS - ACCESORIOS POLIFUSION		PAG. 24	
XXIVTABLAS DE UTILIDADES		PAG. 27	
XXVTABLAS DE MEDIDAS Y RECOMENDACIONES		PAG. 28	

I.- GENERALIDADES

POLIFUSION S.A. creada en el año 1999, a estado a la vanguardia, como especialistas en tuberias de Polipropileno Copolimero Random, en la distribución de agua fria/caliente y otros fluidos a presión. Estas tuberías son usadas en diversos tipo de instalaciones, tales como:,Sanitarias, Calefacción e industrial, incluyendo aire comprimido.

POLIFUSION S.A. fue el precursor de la Norma Chilena NCH 2556 of.2000

POLIFUSION S.A. comenzó en el año 1999 su fabricación de tuberías, con materias primas de la prestigiada empresa BOREALIS, con el PPR-80, que fue la primera generación de polipropilenos Copolímeros Random. En el año 2003 dió un salto técnico muy importante al cambiar a


PPR-100 (POLIFUSION R-3) siendo la única empresa en Latinoamerica en ocupar esta materia prima hasta el día de hoy.

POLIFUSION S.A. en el año 2007, vuelve a dar otro salto tecnologico importante e innovador al adoptar e introducir al mercado Chileno, la última generación en Polipropilenos Copolimeros Random, en sus tuberias POLIFUSION-BETA «PP-RCT, las cuales tendran grandes beneficios para sus instaladores y usuarios.

II.- BENEFICIOS Y CARACTERISTICAS INNOVADORAS DE LAS TUBERIAS POLIFUSION-BETR PP-RCT

Las tuberías **POLIFUSION-BETR PP-RCT**, gracias a su nueva materia prima, Borealis de última generación, tienen las siguientes características y beneficios:

- · Mayor vida útil.
- Mayor resistencia en condiciones de presión y temperatura.
- · Menor espesor de tuberías.
- · Mayor caudal.
- · Posibilidad de disminuir diámetros instalados.
- Mayor flexibilidad.
- Más liviano.
- Fornato en rollos o tiras
- Mayor resistencia a la radiación solar (con aditivo anti-UV).

La figura muestra una comparación porcentual (%) de los diámetros de tuberías utilizados, en un sistema tradicional PPR-80 versus tuberías **POLIFUSION-BETA PP-RCT**, en una instalación domiciliaria, de agua caliente y fría.

III.- PROPIEDADES DE LAS TUBERIAS **POLIFUSION-BETR** «PP-RCT

	VALORES	UNIDAD	TEST
DENSIDAD	0,905	g/cm3	ISO 1183
INDICE DE FLUIDEZ (230 C/2. 16kg)	0,3	g/10min	ISO 1183
RESISTENCIA A LA RUPTURA (50mm/min)	25	MPa	ISO 527-2
RESISTENCIA AL ALARGAMIENTO (50mm/min)	10	%	ISO 527-2
MODULO DE ELASTICIDAD (1mm/min)	900	MPa	ISO 527
RESISTENCIA AL IMPACTO (+23°C.)	40	KJ/m2	ISO 179/1eA
RESISTENCIA AL IMPACTO (0°C.)	4	KJ/m2	ISO 179/1eA
RESISTENCIA AL IMPACTO (-20'C.)	2	KJ/m2	ISO 179/1eA
COEFICIENTE DE EXPANSION LINEAL (0 a 70°	C.) 1,5	10-4K-1	DIN 53572
CONDUCTIVIDAD TERMICA	0,24	WK-1m-1	DIN 53512 Part 1
RESISTIVIDAD SUPERFICIAL	10 12	Ohm	DIN 53482/VDE 0303 Part 2
CALOR ESPECIFICO	1,73	KJ/kg	

IV.-NORMAS Y CERTIFICACIONES

Las tuberías y fittings de ... cumplen con las normas Chilenas

- NCh.2556 of.2000, para las tuberías.
- NCh.1842, NCh.2992, para los fittings.
- NCh.731, para llaves de paso.

Todas las tuberias de polipropileno y fitting fabricados en POLIFUSION S.A. Son certificados en forma permanente por el Centro de Estudios Medición y Certificación y Calidad CESMEC Ltda. ,ISO CASCO-5 y aprobados por la SISS. (Superintendencia de Servicios Sanitarios)

CERTIFICACION DE PRODUCTOS NACIONALES Y APROBACION

Superintendencia de Servicios Sanitarios

ALGUNAS CERTIFICACIONES INTERNACIONALES DE LA MATERIA PRIMA

PORTUGAL

ALEMANIA

AUSTRIA

ESPAÑA

POLONIA

REP. CHECA

ALEMANIA

AUSTRIA

V.-CARACTERISTICAS DE NUESTRAS TUBERIAS **POLIFUSION-BETA** ®

Nuestras tuberías son de alto peso molecular y gracias a su sistema de fabricación de coextrucción (2 Capas), permite agregar aditivos especiales.

CAPA EXTERNA (GRIS).

Alta resistencia al medio externo

Resiste el contacto con caL cemento y otras sustancias corrosivas (Ej.: ácido Muriatico)

CAPA BLANCA C/ADITIVO ANTI-BACTERIAS

- Alta resistencia mecánica
- •Es inerte, atoxica, resiste la corrosión
- Superficie interna lisa, libre de porosidades
 No permite las incrustaciones de sarro, asegurando valores máximos y constantes de caudal
- •Evita la proliferación de bacterias por acumulación de materias orgánicas

LINEA INDICATIVA DE CLASE

- Rojo = S 3,2 (PN-16) Blanco = S 4 (PN-12,5)

CARACTERISTICAS DE NUESTROS TUBOS POLIFUSION-BETR «PP-RCT

AUSENCIA DE SARRO:

La superficie interna de la tubería **POLIFUSION-BETR** «PP-RCT es de una terminación lisa evitando cualquier riesgo de sarro o incrustaciones.

BAJA PERDIDA CALORICA:

Las tuberías **POLIFUSION-BETR PP-RCT** son malos conductores del calor, lo que minimiza las pérdidas y además disminiye el riesgo de condensación.

RESISTENCIA A LAS HELADAS:

La elasticidad de los tubos **POLIFUSION-BETR** PP-RCT permite aumentar su sección si el líquido se congela en su interior.

IDEAL PARA ZONAS SISMICAS:

Los tubos **POLIFUSION-BETR** PP-RCT Gracias a su alta flexibilidad y elasticidad, tienen exelente resistencia a sismos.

ATOXICIDAD ABSOLUTA:

Los tubos **POLIFUSION-BETR** • PP-RCT cuya materia prima con que son fabricadas son perfectamente atóxicas y responden plenamente a las normas de higiene sanitaria internacionales y Chilenas. (Hygiene Institute, Alemania)

AUSENCIA DE CORROSION:

Los tubos **POLIFUSION-BETR** «PP-RCT resisten el agua dura, las sustancias ácidas y alcalinas (ph entre 1 y 14) ver tabla resistencia química.

BAJAS PERDIDAS DE CARGA:

Los tubos **POLIFUSION-BETR** PP-RCT tienen perdidas de carga reducidas debido a que la capa interna tiene una baja rugosidad en la cual no se acumula sarro.

VIDA UTIL:

Las tuberías **POLIFUSION-BETR** •PP-RCT tienen una vida útil superior a 50 años, en función de la temperatura y presión de servicio.

BAJO NIVEL DE RUIDOS DE LAS INSTALACIONES:

La elasticidad y la absorción fónica de las tuberías **POLIFUSION-BETR PP-RCT** evitan la propagación de ruidos y vibraciones por el paso de fluidos y golpes de ariete.

RESISTENCIA A LA ABRASION:

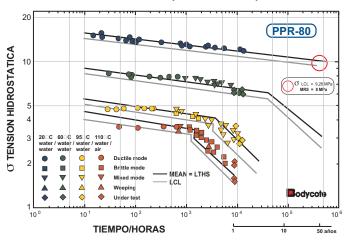
RESISTENCIA A LAS CORRIENTES GALVANICAS:

Los tubos **POLIFUSION-BETR** «PP-RCTson malos conductores eléctricos, loque evita el riesgo de perforaciones del tubo y fitting a causa de las corrientes galvánicas.

CONTROLA LA ACUMULACION DE BACTERIAS:

Gracias a su aditivo Anti-Bacteriano las tuberias **POLIFUSION-BETA «PP-RCT** evita la proliferación de bacterias, por la acumulación de material orgánico.

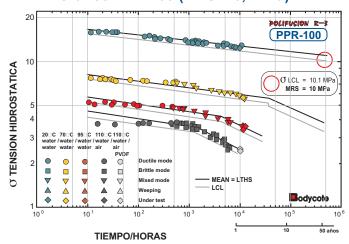
VI.- POLIFUSION-BETA ₀PP-RCT LA ELECCION CORRECTA.



¿Cúal es la diferencia entre las materias primas clasificadas como, PPR-80, PPR-100 y PPR **POLIFUSION-BETR** PP-RCT ?

En los tres casos se esta hablando de Polipropileno Copolimero Random. La diferencia radica fundamentalmente en los valores que se obtienen, al evaluar el material, según la norma internacional EN ISO 9080/1992, o equivalente. Con esta norma se realizán los ensayos de presión interna, que determinan la Resistencia Hidrostatica (vida útil del material).

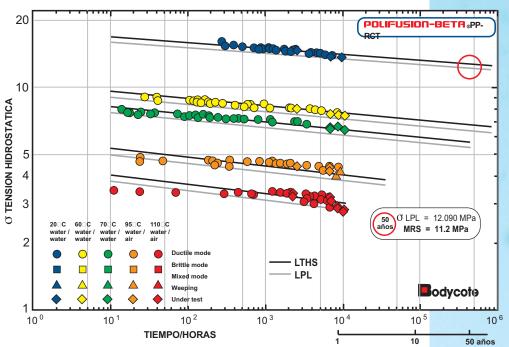
A continuación se observan, las Curvas de Regresión, con los valores de resistencia Hidrostática a través del tiempo.


1.- Gráfico PPR-80 (MRS=8MPa)

Cuadro 1.- (PPR-80)

Resulta	idos Obt	emuos	PPR-00			
La evaluación fue ralizada de acuerdo con el ISO/TR 9080:1992(E) método 1 y módelo QII						
Números	de muest	ras observ	adas.			
20□°C	60□°C	95□°C	110□°C			
25	25	36	25			
Extrapolación Valores de resistencia						
Temp.	tiempo	σLCL	OLTHS			
°□C	años	MPa	MPa			
20	50.0	9.26	10.1			
20	62.9	9.17	9.99			
60	50.3	2.08	2.44			
95	3.02	1.55	1.82			
110	1.00	1.34	1.58			
clasificac	ión:	MRS	= 8 MPa			

2.- Gráfico PPR-100 (MRS=10,1MPa)


Cuadro 2.-Polifusion-R3

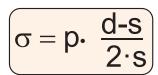
Resultados Obtenidos PPR-100

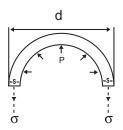
La evaluación fue ralizada de acuerdo con el ISO/TR 9080:1992(E) método 1 y módelo QII					
Números	de muesti	ras observa	adas.		
20□°C	70□°C	95°□C	110□°C		
32	26	24	28		
Extrapol	ación Val	ores de res			
Temp.	tiempo	σlcl	OLTHS		
□°C	años	MPa	MPa		
20	50.0	10.1	10.9		
20	62.8	10.0	10.8		
70	53.1	3.21	3.68		
95	3.19	2.73	2.99		
110	1.04	2.25	2.46		
clasificad	ión:	MRS :	= 10 MPa		

Cuadro 3.- POLIFUSION-BETA PP-RCT

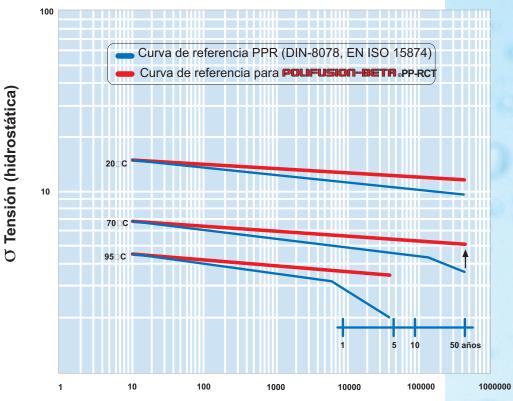
Resulta	dos Obter	nidos Po	lifusió	n-Beta	
La evaluación fue ralizada de acuerdo con el ISO/TR 9080:2003(E) método 1 y módelo QII					
Número	os de mu	estras c	bserva	das.	
20 □°C	60°□C	70°□C	95°□C	110°□	
31	32	32	31	33	
Extrap	olación `	Valores	de resis	tencia	
Temp.	tiempo	σlp	L O	LTHS	
□°C	años	MP	a N	1Pa	
20	50.0	12.	1 1	2.7	
20	100	11.9) 1	2.5	
60	100	6.23	3 6	.64	
70	50.0	5.33	3 5	.69	
95	4.17	3.63	3	.89	
110	1.06	2.82	2 3	.04	
clasific	ación: RS 70 □°C		RS = 11 s = 5.0 l		

En este cuadro la vida útil aumenta a 100 años, con una T□= 60□C y una resistencia de 6,64 Mpa.


Presiones de Operación Máximas Permitidas (bar)					
temperatura C	tiempo de operación (años)	Polifusión-Beta PN-16			
20	10	25,1			
	25	24,6			
	50	24,3			
40	10	18,6			
	25	18,2			
	50	17,9			
60	10	13,4			
	25	13,1			
	50	12,8			
70	10	11,2			
	25	10,9			
	50	10,7			
80	10	9,3			
	25	9,1			
95	5	7,1			


Como podemos concluir **POLIFUSION-BETR**_®PP-RCT. es superior a la primera generación de polipropilenos copolimeros random PPR-80.

VII.-VIDA UTIL SISTEMA POLIFUSION-BETA PP-RCT


Las curvas de regresión, caracterizan el comportamiento de las tuberías a la presión en función de la temperatura. En efecto, estas curvas definen la vida útil de una tubería en función de la tensión tangencial (hidrostatica) a las paredes del tubo (s) resultante de esta presión. La tensión tangencial (σ) ,esta relacionada a la presión interna por la fórmula:

- σ = tensión tangencial (hidrostática)en MPa. (ver gráfico a continuación)
- p = presión en bar.
- d = diámetro exterior del tubo en mm.
- s = espesor del tubo en mm.

Gráfico normas v/s POLIFUSION-BETA PP-RCT

Tiempo de Fallla (h)

VIII- DILATACION TERMICA

El sistema de tubos y fittings **POLIFUSION-BETR PP-RCT**, bajo cambios de temperaturas de los fluidos transportados, experimenta dilatación o contracción lineal, expresados en mm.

fórmula para su cálculo:

$$\Delta \ell = \alpha \cdot \Delta t^{\circ} \cdot L$$

 $\Delta \ell$ = dilatación o contracción lineal

 α = coeficiente de dilatación lineal (0,15mm/m•°C) para el Polipropileno Copolímero Randon.

Δtº = variación de tº del líquido transportado

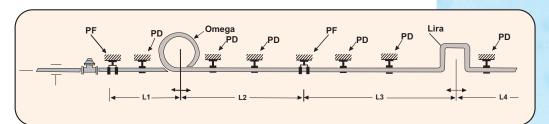
L = largo tubería entre puntos fijos

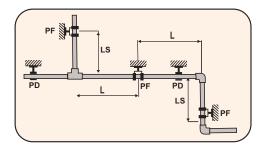
ejemplo:

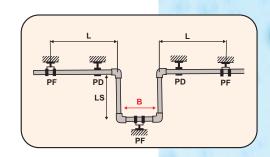
Datos:

largo tubo = 6 metros tº mínima = 20°C tº máxima = 70°C

por lo tanto, Δt° 50°C


Desarrollo:


$$\Delta \ell = \frac{0.15 \text{mm.}}{\text{m} \cdot \text{C}^2} \cdot (70^{\circ}\text{C} - 20^{\circ}\text{C}) \cdot 6\text{m}$$


 $\Delta \ell = 45$ mm.

¿ COMO COMPENSAR LAS DILATACIONES TERMICAS?

Las dilataciones de las tuberías **POLIFUSION-BETR PP-RCT**, pueden ser compensadas mediante un simple cambio de dirección del trazado. Cuando esto no es posible se tienen que proveer liras, omegas o brazos dilatantes ,juntos con una serie de puntos fijos (PF) o deslizantes (PD) según sea conveniente, como se observa en las siguiente figuras.

PF = Punto fijo PD = Punto deslizante LS= Brazo dilatante L = Largo B = Ancho mínimo Lira (10 veces Ø tubo)

IX CALCULO DEL BRAZO DILATANTE

 $Ls = K \sqrt{\Delta \ell \cdot D}$

Ls = largo del brazo dilatante en mm.

K = factor proporcional dependiendo el material (POLIFUSION-BETA = 30)

 $^{\Delta\ell}$ = alargamiento o contracción en mm.

D = diámetro de la tubería.

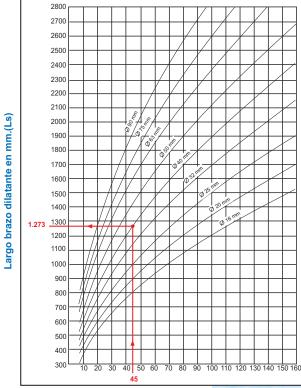
Ejemplo:

Datos:

 $\begin{array}{lll} \text{largo tuber\'ia} & = 6 \text{ metros} \\ \text{T}^{\circ} \text{ m\'inima} & = 20 \square \text{ C.} \\ \Delta \text{T} \square & = 50 \square \text{ C.} \\ \text{T}^{\circ} \text{ m\'axima} & = 70 \square \text{ C.} \\ \text{diámetro tuber\'ia} & = 40 \text{ mm.} \end{array}$

lo primero es dilucidar el $\Delta \ell$:

$$\Delta \ell = \frac{0.15 \text{mm}}{\text{m} \cdot {}^{\circ}\text{C}} \cdot (70^{\circ}\text{C} - 20^{\circ}\text{C}) \cdot 6\text{m}$$


$\Delta \ell = 45 \text{mm}$

con el $\Delta \ell$, calcularemos el largo del brazo dilatante Ls.

$$Ls = 30\sqrt{45 \cdot 40}$$

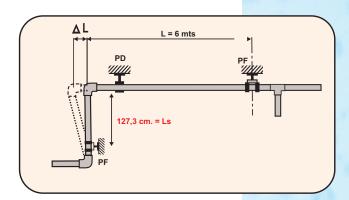
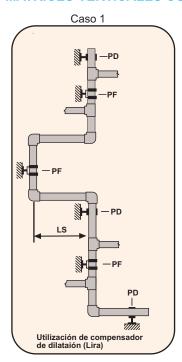
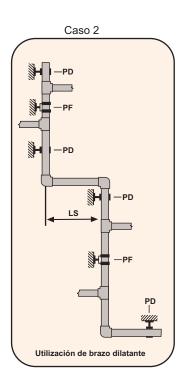

Ls = 1273mm = 127,3 cm.

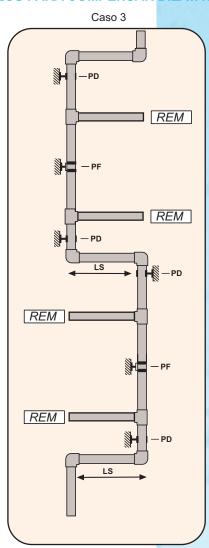
Figura 2

Δe en mm.

Por lo tanto en nuestra figura el próximo punto fijo debe colocarse a 127.3 cm. del lado libre.




X INSTALACIONES DE TUBERIAS VERTICALES CON T

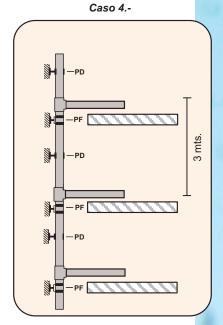


Las tuberías se deben fijar mediante abrazaderas para inmovilizarlas, combinando puntos fijos (PF) y puntos deslizantes (PD) según sea conveniente. Esto es fundamental en tuberías que transporten fluidos a temperatura superior a la T□ ambiente.

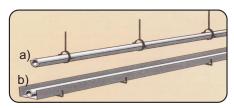
MATRICES VERTICALES CON BRAZOS PARA COMPENSAR DILATACIÓN

Este caso muestra un tipo de solución en matrices verticales de agua caliente, donde es necesario mantener estable los grupos de remarcadores (REM)

NOTA: Recomendamos consultar a nuestro departamento técnico.



XI TUBERIAS VERTICALES A LA VISTA

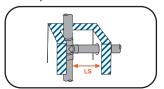

Montantes Y Bajadas De Agua Fria

Las tuberías deberán fijarse mediante abrazaderas inmovilizando la tubería , llamadas punto fijo, cada tres metros. Como regla general las abrazaderas de punto fijo se ubicarán lo mas próximo a las tees o válvulas como sea posible. Entre medio de los puntos fijos se colocarán puntos deslizantes o abrazaderas deslizantes.

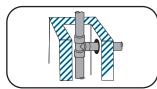
XII INSTALACION DE TUBERIAS HORIZONTALES CON T

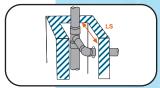
Normalmente se podrán usar canaletas porta cables o fierro en U, para soportar las tuberías.

- a) Agua fría
- b) Agua caliente


Cuando esto no es posible se recurre a la tabla que indica la distancia entre las abrazaderas según la temperatura de servicio y el diámetro de la tubería.

d	TABLA DE DISTANCIAS ENTRE ABRAZADERAS EN CENTIMETROS						
mm	20°C	30°C	40°C	50°C	60°C	70°C	80°C
16	75	70	70	65	65	60	55
20	80	75	70	70	65	60	60
25	85	85	85	80	75	75	70
32	100	95	90	85	80	75	70
40	110	110	105	100	95	90	85
50	125	120	115	110	105	100	90
63	140	135	130	125	120	115	105
75	155	145	140	135	130	125	120
90	170	160	155	150	145	140	135
110	185	180	170	165	160	155	150
125	200	195	190	180	170	165	160


XIII- INSTALACION DE UNA TUBERIA DESDE UN SHAFT A UN DEPARTAMENTO


Tendremos que tomar en consideración que las tuberías se expanden en forma lineal. Para hacer la instalación desde un shaft hacia un departamento deberemos seguir algunas de estas opciones:

A.-alejar la tee del muro de entrada al departamento.

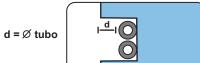
B.- la perforación de entrada al departamento deberá ser mas amplia que el diámetro de la tubería.

C.- un brazo dilatante con un codo es usado para la entrada al departamento

XIV-INSTALACION DE TUBERIAS

El sistema POLIFUSION-BETR PP-RCT se pueden embutir en muros y pisos, sin recubrimientos ni previsiones por dilatación o contracción.

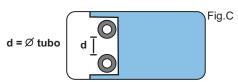
Las cargas de cierre, dada la elevada resistencia mecánica de todos los componentes del sistema no los comprimen ni los dañan.

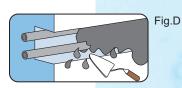

El cemento, la cal y las sustancias corrosivas en general no los atacan.

En cuanto a la variación longitudinal, dilatación o contracción, originada por los cambios de temperatura del agua y del ambiente, el sistema cuenta a su favor con las uniones fusionadas y una resistencia a la tracción que supera largamente las tensiones originadas por las solicitaciones térmicas.

Por todas las razones expuestas, el embutido del sistema Polifusión-Beta, se podrán llevar a cabo sin previsiones, ni envolturas.

CONSIDERACIONES PARA UNA INSTALACION EMBUTIDA


•.- En el caso de una pared ancha como en la figura A, la inmovilización o el empotramiento se logra realizando un recubrimiento de mortero con un espesor mínimo equivalente al diámetro de la tubería a embutir. Cuando sea este el caso, la mezcla de cierre de la canaleta podrá prescindir de ser demasiado fuerte, figura B.



- ..-Si el caso fuera un muro angosto se tienen que tomar las siguientes precauciones:
- 1.- Aumento de la altura de la canaleta que posibilite la separación de los tubos de agua fría y caliente. La separación o distancia tendrá que ser equivalente a un diámetro de la tubería a embutir, figura C.

2.- Cierre la canaleta con una mezcla fuerte que abrase ambas tuberías, figura D.

NOTA: Se sugiere que en todos los cambios de dirección de la tubería (codos y tees) y /o cada 40 o 50 cms. horizontal o vertical se coloque una cuchara de mortero de frague rápido.

XV TRANSPORTE DE KCAL/H PARA DISTINTAS VELOCIDADES

		PN-16	PN-16	
diametro	Velocidad	caudal	Pot/∆10°C	Pot/∆ 20°C
mm	m/s	l/min	Kcal/h	Kcal/h
16,0	0,5	3,2	1.902,2	3.804,5
20,0	0,5	4,9	2.931,4	5.862,8
25,0	0,5	7,6	4.580,3	9.160,6
32,0	0,5	12,7	7.609,0	15.217,9
40,0	0,5	19,8	11.889,0	23.778,0
50,0	0,5	30,9	18.525,4	37.050,7
63,0	0,5	49,4	29.653,8	59.307,6
75,0	0,5	69,7	41.835,7	83.671,5
90,0	0,5	100,8	60.465,1	120.930,3
110,0	0,5	150,0	90.023,4	180.046,8

		PN-16	PN-16	
diametro	Velocidad	caudal	Pot/∆10°C	Pot/∆ 20°C
mm	m/s	l/min	Kcal/h	Kcal/h
16,0	1,0	6,3	3.804,5	7.609,0
20,0	1,0	9,8	5.862,8	11.725,6
25,0	1,0	15,3	9.160,6	18.321,2
32,0	1,0	25,4	15.217,9	30.435,9
40,0	1,0	39,6	23.778,0	47.556,0
50,0	1,0	61,8	37.050,7	74.101,5
63,0	1,0	98,8	59.307,6	118.615,2
75,0	1,0	139,5	83.671,5	167.342,9
90,0	1,0	201,6	120.930,3	241.860,6
110,0	1,0	300,1	180.046,8	360.093,6

		PN-16	PN-16	
diametro	Velocidad	caudal	Pot/∆10°C	Pot/∆ 20°C
mm	m/s	l/min	Kcal/h	Kcal/h
16,0	1,5	9,5	5.706,7	11.413,4
20,0	1,5	14,7	8.794,2	17.588,4
25,0	1,5	22,9	13.740,9	27.481,8
32,0	1,5	38,0	22.826,9	45.653,8
40,0	1,5	59,4	35.667,0	71.334,0
50,0	1,5	92,6	55.576,1	111.152,2
63,0	1,5	148,3	88.961,4	177.922,9
75,0	1,5	209,2	125.507,2	251.014,4
90,0	1,5	302,3	181.395,4	362.790,8
110,0	1,5	450,1	270.070,2	540.140,3

		PN-16	PN-16	
diametro	Velocidad	caudal	Pot/∆10°C	Pot/∆20°C
mm	m/s	l/min	Kcal/h	Kcal/h
16,0	2,0	12,7	7.609,0	15.217,9
20,0	2,0	19,5	11.725,6	23.451,2
25,0	2,0	30,5	18.321,2	36.642,5
32,0	2,0	50,7	30.435,9	60.871,7
40,0	2,0	79,3	47.556,0	95.112,1
50,0	2,0	123,5	74.101,5	148.202,9
63,0	2,0	197,7	118.615,2	237.230,5
75,0	2,0	278,9	167.342,9	334.685,9
90,0	2,0	403,1	241.860,6	483.721,1
110,0	2,0	600,2	360.093,6	720.187,1

		PN-16	PN-16	
diametro	Velocidad	caudal	Pot/∆10°C	Pot/∆ 20°C
mm	m/s	l/min	Kcal/h	Kcal/h
16,0	2,5	15,9	9.511,2	19.022,4
20,0	2,5	24,4	14.657,0	29.314,0
25,0	2,5	38,2	22.901,5	45.803,1
32,0	2,5	63,4	38.044,8	76.089,6
40,0	2,5	99,1	59.445,0	118.890,1
50,0	2,5	154,4	92.626,8	185.253,6
63,0	2,5	247,1	148.269,1	296.538,1
75,0	2,5	348,6	209.178,7	418.357,3
90,0	2,5	503,9	302.325,7	604.651,4
110,0	2,5	750,2	450.116,9	900.233,9

XVI PERDIDA DE KCAL/H PARA DISTINTOS DIFERENCIALES DE T°

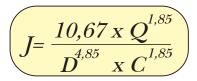
Calculo realizado con datos standard.

Para: ΔT ° 10°C (60°C/50°C)

Para: ΔT° 20°C (90°C/70°C)

nota. $\Delta T^{\circ} = (T^{\circ}fluido - T^{\circ} ambiente)$

	PN-16								
Δ T ° =	· ° C	10° C	20° C	30° C	40° C	50° C	60° C	70° C	80° C
diametro	d.int	Calor cedido							
mm	mm	[Kcal/hr]/m							
16	11,6	3,70	7,41	11,11	14,81	18,52	22,22	25,92	29,63
20	14,4	4,53	9,06	13,59	18,12	22,65	27,18	31,71	36,24
25	18,0	5,79	11,58	17,38	23,17	28,96	34,75	40,55	46,34
32	23,2	7,27	14,53	21,80	29,07	36,34	43,60	50,87	58,14
40	29,0	8,85	17,69	26,54	35,39	44,23	53,08	61,92	70,77
50	36,2	10,75	21,49	32,24	42,98	53,73	64,47	75,22	85,96
63	45,8	13,05	26,09	39,14	52,18	65,23	78,27	91,32	104,37
75	54,4	15,08	30,16	45,23	60,31	75,39	90,47	105,55	120,62
90	65,4	17,38	34,75	52,13	69,50	86,88	104,25	121,63	139,01
110	79.8	20.21	40.42	60.63	80.84	101,05	121,26	141,47	161,68


XVII.- PERDIDAS DE CARGA DE TUBERIAS Y FITTINGS.

El valor de rugosidad interna absoluta (0,0007mm) de los tubos y fittings **POLIFUSION-BETR PP-RCT** disminuye notablemente la resistencia al desplazamiento de los fluidos, permitiendo alcanzar velocidades de circulación mayores.

Para determinar la caída de presión en Metros Columna de agua (mca), se recomienda utilizar la fórmula de Hazen y Williams:

Fórmula de: HAZEM-WILLIAMS

Donde:

J = Perdidas de carga unitaria en m.c.a./m.

Q = Caudal Máximo Probable en m3/s.

= Diámetro interior de la tubería.

C = Coeficiente de fricción del polipropileno.

(* C=150

El cálculo se puede realizar por fórmula o con los diagramas que se adjuntan en las páginas siguientes.

Eiemplo

Se considera una tubería S3,2(PN-16) de 10 Metros de longitud y díametro 32 mm. Con un caudal de 30 Lt/min.

Del gráfico para pérdidas de carga en tuberías S3,2(PN-16) (pag.17), obtenemos:

$$V = 1.18 \text{ m/s}$$

 $J = 0.07 \text{ m.c.a.}$

La caida de presión en los 10 m es:

$$Jx L = 0.07 x 10 = 0.7 m.c.a.$$

Las perdidas singulares se obtienen de la siguiente formula:

$$\int Js = \sum K \times \frac{V^2}{2 \times g}$$

Donde:

Js = Perdidas singulares. en m.c.a.

K = coeficiente de proporcionalidad.

g = aceleración de gravedad. 9.81 m/s.

v = velocidad del fluido en m/s.

Para facilitar este cáculo se adjunta tabla de coefientes de singularidad "k" de los fittings y una tabla simplificada para obtener las pérdidas .(pag 18-19)

Para realizar el cálculos con la ayuda de las tablas, sólo se necesita tener la velocidad del fluido y el valor "k" de los fittings de un mismo tramo, multiplicado por "Z" (ver tabla pag 18-19).

$$Js = \sum K \times Z$$

$$\left(Z=1 \ x \frac{V^2}{2 x g}\right)$$

por ejemplo: siguiendo con el caso anterior, consideramos un: codo de $32 \times 90 \square \Rightarrow K=1,2$ una velocidad de 1,18 m/s. 1,2 m/s \Rightarrow z=0,073 m por lo tanto:

 $I_S = 0.073 \times 1.2 = 0.087 \text{ m.c.a.}$ y representa la caida de presión en el fitting.

XVIII.-DIAGRAMA DE PÉRDIDAS DE CARGA PARA TUBERÍAS **POLIFUSION-BETR** PP-RCT, S 4(PN-12,5)

Pérdida de carga J=mca

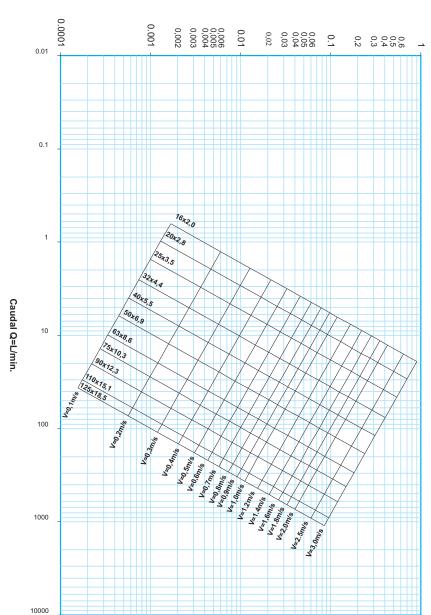
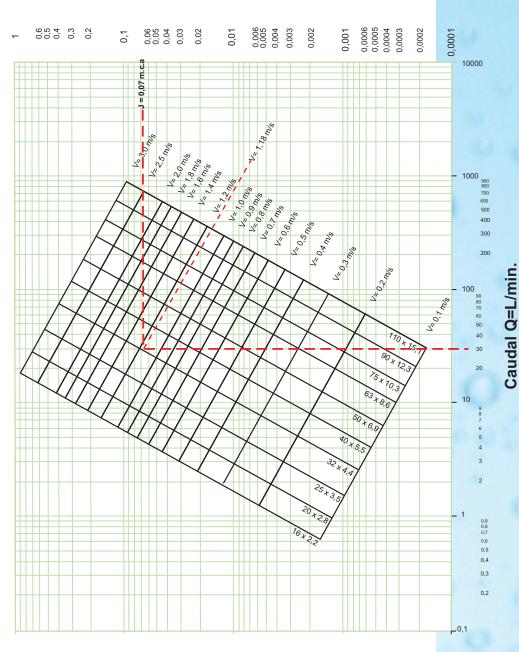



Diagrama de Perdidas de carga para tuberias de PP-R, PN-12.5 Polifusion S.A.

XIX.-DIAGRAMA DE PÉRDIDAS DE CARGA PARA TUBERÍAS POLIFUSION-BETR ∘PP-RCT , S 3,2(PN-16)

Pérdida de carga J=mca

XX- COEFICIENTE DE PERDIDAS LOCALES "k" DE LOS FITTINGS.

Politusión	Solo ®
ESPECIALISTAS EN TUBERIAS Y FITTINGS DE POLIFI POLIFUSION-BETR	

FITTING	DIAGRAMA	FLUJ	"K"
FITTING	DIAGRANIA	FLUJ	N.
	Ξ		0,25
	<u> </u>	Reducción de 1 Diámetro de 2 Diámetro de 3 Diámetro de 4 Diámetro	0,40 0,5 0,6 0,7
			2,1 3,7
5			0,25
	<u></u>		1,20
	↓		0,80
	_ ↓		1,80
			3,00
	(1		0.50
	Г		1.20
	-		0.50
	— " →		0.40
	[₄ [""		1.4
	A C		1.6
	_ ! ∤ ! _ >	16 mm.x 1/2"Hi 20 mm.x 1/2"Hi 25 mm.x 3/4"Hi 32 mm.x 1"Hi	1,40 1,60 1,60 1,60

O COEFICIENTE DE PERDIDAS LOCALES "k" DE LOS FITTINGS.

Las tablas indican la pérdida de carga Z en función de un coeficiente k =1, para agua a 10°C (g= 999,7 Kg/m3) y para diferentes valores de la velocidad de circulación.

VELOCIDAD V = m/s	PERDIDA DE CARGA Z•k	VELOCIDAD V = m/s	PERDIDA DE CARGA Z•k
0,1	0,001	2,6	0,345
0,2	0,002	2,7	0,372
0,3	0,005	2,8	0,400
0,4	0,008	2,9	0,429
0,5	0,013	3,0	0,459
0,6	0,018	3,1	0,490
0,7	0,025	3,2	0,522
0,8	0,033	3,3	0,555
0,9	0,041	3,4	0,589
1,0	0,051	3,5	0,624
1,1	0,062	3,6	0,661
1,2	0,073	3,7	0,698
1,3	0,086	3,8	0,736
1,4	0,100	3,9	0,775
1,5	0,115	4,0	0,815
1,6	0,130	4,1	0,857
1,7	0,147	4,2	0,899
1,8	0,165	4,3	0,942
1,9	0,184	4,4	0,987
2,0	0,204	4,5	1,032
2,1	0,225	4,6	1,078
2,2	0,247	4,7	1,126
2,3	0,270	4,8	1,174
2,4	0,294	4,9	1,224
2,5	0,319	5,0	1,274

Para utilizar esta tabla:

$$Js = \sum K \times Z$$

$$Z=1 \times \frac{V^2}{2 \times \varphi}$$

Donde:

Js = Pérdidas singulares. en m.c.a.

K = Coeficiente de proporcionalidad.

g = Aceleración de gravedad. 9.81 m/s.

V = Velocidad del fluido en m/s.

z = Pérdida de carga cuando K=1.

XXI.- TERMOFUSION, UNION MOLECULAR DE TUBERIAS Y FITTINGS.

1- Cortar el tubo con tijera, Sierra o equivalente; asegurándose que sea recto, a escuadra y libre de rebabas.

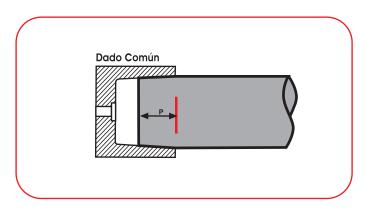
2- Marcar el extremo del tubo antes de introducirlo en el dado de fusión, de acuerdo a las medidas de penetración para cada diámetro, ver pag. siguiente.

3- Antes de proceder a la termofusión, la máquina FUSIOTHERMo tendrá que estar en su régimen de temperatura de trabajo, entre 260°C y 280°C. esto se percibirá al apagarse la luz piloto.

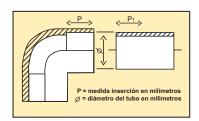
4- Introducir el fitting hasta que llegue al tope y el tubo sólamente hasta la marca,hecha previamente, sosteniendolos derecho en forma perpendicular a la plancha de la máquina FUSIOTHERM_®.

5-Retirar el tubo y el fitting de la maquina FUSIOTHERM⊗ simultáneamente cuando se cumpla el tiempo de calentamiento ,según su diámetro.(ver pag. siguiente).

6- Inmediatamente después de retirados el tubo y el fitting de la maquina **FUSIOTHERM**, proceder sin prisa, pero sin pausa, a introducir la punta del tubo dentro del fitting, sin girar las piezas.


7- Frenar la introdución del tubo dentro del fitting,hasta la marca y cuando los dos anillos visibles que se forman por el traslape del material ,se junten.

Nota: sostener en esta posición por un lapso de 5 seg. para asegurar la unión.


TERMOFUSION, UNION MOLECULAR DE TUBERIAS Y FITTINGS.

CUADRO GUIA

diámetro mm	tiempo calentamiento segundos	tiempo insercion segundos	tiempo enfriamiento minutos	penetración tubos (P) mm
16	5	4	2	13
20	5	4	2	14
25	7	4	3	16
32	8	6	4	18
40	12	6	4	20
50	18	6	4	23
63	40	8	6	26
75	50	10	8	28
90	60	10	8	32
110	90	10	8	34
125	180	10	9	36

El Tiempo de calentamiento en segundos se empieza a contar, una vez introducido el fitting y la tubería a la medida de penetración correspondiente.

CURVADO DE TUBERIAS.

Si fuera necesario curvar las tuberías, tendrá que realizarse con una pistola de aire caliente, no con llama directa, los radios mínimos permisibles serán de 8 veces el diámetro de la tubería.

■ XXII.- TABLA DE RESISTENCIA QUIMICA **POLIFUSION-BETA**®PP-RCT

		R	esistenci	a
PRODUCTO QUIMICO	CONCENTRACION	20°C	60°C	100°C
Acetic acid	Up to 40%		•	_
Acetic acid	50%	•	•	0
Acetic acid, glacial	>96%	•	0	0
Acetic anhydride	100%	•		-
Acetone	100%	•	•	-
Aceptophenone	100%		0	
Acrylonitrile	100%	·		-
Air (aire)		•	•	•
Allyl alcohol	100%		•	<u> </u>
Almond oil (aceite almendra)		•		-
Alum (alumbre)	Sol		•	-
Ammonia, aqueous	Sat.sol			
Ammonia, dry gas (seco)	100%			
Ammonia, liquid (líquido)	100%			-
Ammonium acetate	Sat.sol		-	-
Ammonium chloride	Sat.sol		_	⊢-
Ammonium fluoride	Up.to 20%		-	├-
		•	-	⊢
Ammonium hydrogen carbonate	Sat.sol			-
Ammonium metaphosphate	Sat.sol	•	•	•
Ammonium nitrate	Sat.sol	•	•	•
Ammonium persulphate	Sat.sol	•	•	
Ammonium phosphate	Sat.sol	•	-	
Ammonium sulphate	Sat.sol	•	•	•
Ammonium sulphide	Sat.sol	•	•	
Amyl acetate	100%	0	-	
Amyl alcohol	100%	•	•	•
Aniline (anilina)	100%	•	•	-
Apple Juice (jugo manzana)		•	-	-
Aqua regia	HCI/HNO3=3/1	0	0	0
Barium bromide	Sat.sol	•	•	•
Barium carbonate	Sat.sol	•	•	•
Barium chloride	Sat.sol	•	•	•
Barium hydroxide	Sat.sol	ě	•	ě
Barium sulphide	Sat.sol	•	-	•
Beer (cerveza)	Odt.301		0	_
Benzene	100%	0	0	-
		•	<u> </u>	\vdash
Benzoic acid	Sat.sol 100%			
Benzyl alcohol		•	0	
Borax	Sol	•	•	
Boric acid	Sat.sol	•		
Boron trifluoride	Sat.sol	•	_	_
Bromine, gas		0	0	0
Bromine, liquid	100%	0	0	0
Butane, gas	100%	•	-	-
Butanol	100%	•	0	0
Butyl acetate	100%	0	-	-
Butyl glycol	100%	•	_	-
Butyl phenols	Sat.sol	ě	_	-
Butyl phthalate	100%	ě	0	0
Calcium carbonate	Sat.sol	•	•	•
Calcium chlorate	Sat.sol	•	•	-
Calcium chloride	Sat.sol	•	-	•
Calcium hydroxide	Sat.sol	•	-	-
Calcium hypochlorite	Sol			-
Calcium nitrate	Sat.sol		•	
Camphor oil	Gattaoi	0	0	-
Carbon dioxide, dry gas		ŏ	ŏ	Ě
Carbon dioxide, dry gas Carbon dioxide, wet gas		-	-	
Carbon disulphida	100%		-	-
Carbon disulphide	100%	-	-	-
Carbon monoxide, gas	4000/	0		
Carbon tetrachloride	100%	0	0	0
Castor oil (aceite castor)	100%	•	•	
Caustic soda	Up to 50%	•	0	0
Chlorine, aqueous	Sat.sol	0	0	-
Chlorine, dry gas	100%		0	0
Chlorine, liquid	100%	0	0	0
Chloroacetic acid	Sol	•		
Chloroethanol	100%l	•	-	-
Chloroform	100%	0	0	0
Chlorosulphonic acid	100%	0	Ō	Ō
Chrome alum	Sol	•	•	-
Chromic acid	Up to 40%	•	0	0
Citric acid	Sat.sol	-	ě	ŏ
Coconut oil (aceite coco)		-		<u> </u>
Copper (II) chloride	Sat.sol	-	-	
Copper (II) critoride Copper (II) nitrate	Sat.sol	-	-	-
Copper (II) sulphate	Sat.sol	-	-	-
Com oil (accite mair)	Sat.Sui	-	0	-
Com oil (aceite maiz)		-	0	<u> </u>
Cottonseed oil (aceite algodón)	Constant - CON	-	-	-
Cresol	Greater than 90%	-		-

Cystohaxane 100%					
Decain (decatydronaphthalane)					
Decain (decatydronaphthalane)					
Decalin (decatlydronaphthalene)			•		<u> </u>
Decalin (decatrydronaphthalene) 100% O O O O Decatrin Sol	Cyclohexanol	100%			-
Deatrin	Cyclonexarione	100%	•	-	-
Dextrose			0	0	0
Dibutil phthate 100% 0 0 0		Sol	•	•	-
Dichloroseatic acid 100% 0					
Dichlorethydren (A and B) 100% 0	Dichloroacetic acid	100%	ō	-	 -
Diethyleng glycol	Dichloroethylene (A and B)	100%		-	-
Diethylene glycol 100%				-	-
Diglycolic acid	Diethylene glycol		•		-
Dimethyl smine gas	Diglycolic acid	Sat.sol		-	-
Dimethyl formamide		100%		0	-
Diocyl phthalate 100%	Dimethyl amine gas Dimethyl formamide	100%		-	+-
Distilled water	Dioctyl phthalate				-
Ethanolamine	Dioxane			0	-
Ethyl acetate	Distilled water	100%	•	•	-
Ethyl alcohol	Ethanolamine	100%	•	-	-
Ethylchoride, gas	Ethyl acetate	100%			0
Ehylene chloride (mono and di) Ehylene chloride (mono and di) Elhylene glycol Ferric chloride Satt.sol Ferric chloride Ferric chloride Ferric chloride Ferric chloride Satt.sol Ferric chloride Ferric chloride Satt.sol Ferric chloride Ferric chloride Satt.sol Ferric chloride Ferric chloride Satt.sol Ferric chloride Ferric chloride Ferric chloride Satt.sol Ferric chloride Ferric ch		Up to 95%			•
Ethylene glycol	Etnyl chloride, gas Fhylene chloride (mono and di)				-
Ethylene glycol		100%			-
Formic acid			•	•	•
Formic acid		0.1.			
Formic acid				-	-
Formic acid ahrydrous 100%				•	0
Fructisce Sol	Formic acid	85%			0
Fruit juice (jugo fruta) Gesaline, pertend O O O O Califinatic hydrocarbons) Gelatine Glucose 20% Sycerine 100% Glycelic acid 100% Heyane 100% Heyane 100% Heyane 100% O O O O O O O O O O O O O O O O O O O	Formic acid, anhydrous				
Gasoline petrol	Fruit juice (jugo fruta)	301	_	_	_
Gelatine				Ō	
Glucose 20%	(aliphatic hydrocarbons)			-	_
Syperine 100%	Glucose	20%	-	-	-
Heptane	Glycerine	100%	•	•	•
Hezane	Glycolic acid	30%	•	-	
Hezane	Hesters	4000/			
Hydrochomic acid	Hexane				-
Hydrochloric acid	Hydrobromic acid	Up to 48%	_		0
Hydrochoric acid	Hydrochloric acid	Up to 20%			•
Hydrofluoric acid	Hydrochloric acid		•	0	0
Hydrogen highdred ry gas 100%	Hydrofluoric acid	Dil.sol	•	-	-
Hydrogen chloride, dry gas Hydrogen chloride, dry gas Up to 10% Hydrogen peroxide Up to 30% Hydrogen sulphide, dry gas 100% □ Lodine, in alcohol Isopropyl alcohol Isopropyl alcohol Isopropyl alcohol Isopropyl ether 100% □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ - Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ - Lactic acid □ Lactic acid Up to 90% □ - Lactic acid □ Lactic acid □ Lactic acid Up to 90% □ - Lactic acid □ □ Lact	Hydrofluoric acid			-	-
Hydrogen peroxide				-	+=-
Hydrogen peroxide Hydrogen peroxide Lodine, in alcohol Lodine, in alcohol Secretare 100%		Up to 10%	•	-	! -
Lodine, in alcohol	Hydrogen peroxide	Up to 30%	•		
Soctane 100% 0	Hydrogen sulphide, dry gas	100%	•	•	<u> </u>
Soctane 100% 0	Lodine in alcohol			 	
	Isoctane			0	0
Lactic acid	Isopropyl alcohol			•	•
Lanoline ● ● ● Linseed oil ● ● Magnesium carbonate Sat.sol ● ● Magnesium hydroide Sat.sol ● − Magnesium sulphate Sat.sol ● − Magnesium sulphate Sat.sol ● − Mercury (II) chloride Sat.sol ● − Mercury (II) cyloride Sat.sol ● − Mercury (II) cyloride Sat.sol ● − Mercury (II) cyloride Sol ● −	Isopropyl ether	100%	0	-	-
Lanoline ● ● ● Linseed oil ● ● Magnesium carbonate Sat.sol ● ● Magnesium hydroide Sat.sol ● − Magnesium sulphate Sat.sol ● − Magnesium sulphate Sat.sol ● − Mercury (II) chloride Sat.sol ● − Mercury (II) cyloride Sat.sol ● − Mercury (II) cyloride Sat.sol ● − Mercury (II) cyloride Sol ● −	Lactic acid	Up to 90%	•	•	-
Magnesium carbonate	Lanoline	·			
Magnesium chloride Sat.sol ● Magnesium hydroxide Sat.sol ● Magnesium sulphate Sat.sol ● Malic acid Sat.sol ● Mercury (II) cylanide Sat.sol ● Mercury (II) cylanide Sat.sol ● Mercury (II) rivate Sol ● Mercury 100% ● Methyl acotate 100% ●	Linseed oil		•	•	•
Magnesium chloride Sat.sol ● Magnesium hydroxide Sat.sol ● Magnesium sulphate Sat.sol ● Malic acid Sat.sol ● Mercury (II) cylanide Sat.sol ● Mercury (II) cylanide Sat.sol ● Mercury (II) rivate Sol ● Mercury 100% ● Methyl acotate 100% ●	Magnesium carbonate	Sat sol			
Magnesium hydroxide Sat.sol - - Magnesium sulphate Sat.sol - - Malic acid Sat.sol - - Mercury (II) chloride Sat.sol - - Mercury (I) nitrate Sol - - Mercury 100% - - Methyl acatale 100% - -	Magnesium chloride	Sat.sol	•	•	<u> </u>
Mercury (II) chloride					-
Mercury (II) chloride	Malic acid		•		1
Mercury (II) cyanide Sat sol - Mercury (I) nitrate Sol - Mercury (II) was a constant of the constant of th	Mercury (II) chloride	Sat.sol			-
Mercury 100% ■ − Methyl acetate 100% ■ −	Mercury (II) cyanide	Sat.sol			-
Methyl acetate 100% ■ −	Mercury (I) nitrate				-
	Methyl acetate				=
	Methyl alcochol				0
					١.

TABLA DE RESISTENCIA QUIMICA **POLIFUSION-BETA** PP-RCT

POLIFUSION-BETA PP-RCT

		R	esistenci	a
PRODUCTO QUIMICO	CONCENTRACION	20°C	60°C	100°C
Methyl amine	Up to 32%	•	_	_
Methyl bromide	100%	0	0	0
Methyl ethyl ketone	100%	•	-	-
Methylene chloride	100%	0	0	0
Milk (leche)		•	•	•
Monochloroacetic acid	>85%	•	•	
Naphtha		•	0	0
Nickel chloride	Sat.sol	•	•	-
Nickel nitrate	Sat.sol	-	-	H
Nickel sulphate	Sat.sol		-	-
Nitric acid	Up to 30%	•	ō	0
Nitric acid	From 40% to 50%	0	0	0
Nitric acid,fujming		0	0	0
(With nitrogen dioxide)				
Nitrobenzene	100%	•	0	
			0	
Oleic acid Oleum	100%	•		
(sulphuric acid with 60% of SC	12)	•	0	
Olive oil (aceite oliva)	(3)	•	•	0
Oxalic acid	Sat.sol		0	0
Oxygen,gas		•		-
Petroleum		•	0	
Paraffin oil (FL 65)		•	0	0
Peanut oil (aceite mani)		•	•	-
Peppermint oil		•	-	-
Perchloric acid	(2N) 20%	•		
Petroleum ether (ligroine)	5%	0	0	
Phenol Phenol	90%	•	•	-
	90%	-	-	⊢≕
Phosphine, gas Phosphoric acid	Up to 85%		-	•
Phosphorus oxychloride	100%	0	-	-
Pitric acid	Sat.sol	ě	_	•
Potassium bicarbonate	Sat.sol	•	•	•
Potassium borate	Sat.sol	•	•	-
Potassium bromate	Up to 10%	•	•	
Potassium bromide	Sat.sol	•	•	
Potassium carbonate	Sat.sol	•	•	
Potassium chlorate Potassium chloride	Sat.sol		-	
Potassium chloride Potassium chromate	Sat.sol Sat.sol	•	-	<u> </u>
Potassium cyanide	Sol	-	•	⊢
Potassium dichromate	Sat.sol	•	•	•
Potassium ferricyanide	Sat.sol			-
Potassium fluoride	Sat.sol	•	•	-
Potassium hydroxide	Up to 50%	•	•	•
Potassium iodide	Sat.sol	•	-	
Potassium nitrate	Sat.sol Sat.sol	•	•	
Potassium perchlorate	10%	•	•	⊢
Potassium permanganate Potassium persulphate	(2N)30% Sat.sol	-	-	-
Potassium persuipnate Potassium sulphate	Sat.sol		•	-
Propane, gas	100%			-
Propionic acid	>50%	•	-	_
Pyridine	100%	0	-	_
Sea water		•	•	•
Silicone oil	Cataal	•	•	•
Silver Nitrate Sodium acetate	Sat.sol Sat.sol	•	•	0
Sodium acetate Sodium benzoate	35%		0	-
Sodium bicarbonate	Sat.sol		•	-
Sodium carbonate	Up to 50%	•	•	0
Sodium chlorate	Sat.sol	•	•	-
Sodium chloride	Sat.sol	•	•	
Sodium chlorite	2%	•	0	0
Sodium chlorite	20%	•	0	0
Sodium dichromate	Sat.sol	•	0	0
Sodium hydrogen carbonate	Sat.sol Sat.sol	•	•	•
Sodium hydrogen sulphite	Sat.sol			-
Sodium hydrogen sulphite Sodium hydroxide	5at.soi 1%		-	-
Sodium hydroxide	From 10% to 60%		•	-
Sodium hypochlorite	5%			-
Sodium hypochlorite	10% - 15%	•	-	-
Sodium hypochlorite	20%	•	0	

		R	esistenc	ia
PRODUCTO QUIMICO	CONCENTRACION	20°C	60°C	100°
Sodium metaphosphate	Sol	•	_	_
Sodium nitrate	Sat.sol	•	•	-
Sodium perborate	Sat.sol	•	•	-
Sodium phosphate (neutral)		•	•	•
Sodium silicate	Sol	•	•	_
Sodium sulphate	Sat.sol	•	•	_
Sodium sulphide	Sat.sol	•	-	-
Sodium sulphite	40%	•	•	•
Sodium thiosulphate (hypo)	Sat.sol	•	-	-
Soybeen oil (aceite soya)		•	0	-
Succinic acidld	Sat.sol	•	•	-
Tartaric acid	Sat.sol	•	•	_
Tetrahydrofuran	100%	•	Ö	0
tetralin	100%	0	0	0
Thiophene	100%	•	Õ	_
Tin (IV) chloride	Sol	•	•	_
Tin (II) chloride	Sat.sol	•	•	_
Toluene	100%	0	Ô	0
Trichloroacetic acid	Up to 50%	•	•	-
Trichloroethylene	100%	0	0	0
Triethanolamine	Sol	•	-	-
Turpentine		0	0	0
Urea	Sat.sol	•	•	-
Vinegar (vinagre)		•	•	-
Water brackish, mineral, potable		•	•	•
Whiskey		•	•	-
Wines (vino)		•	•	-
Xylene	100%	0	0	0
Yeast	Sol	•	•	•
Zinc chloride	Sat.sol	•	•	-

NOMENCLATURA

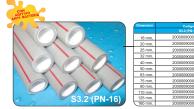
= Resistencia Alta

= Resistencia Media

= No Resiste

Sat.sol = Solución saturada

Sol = Soluciones acuosas, a concentraciones sobre 10% pero no saturadas


Dil.sol = Soluciones acuosas diluidas a concentraciones = o bajo el 10%

XXIII.-TUBERIAS - FITTINGS Y ACCESORIOS

POLIFUSION-BETR © PP-RCT

Tuberías **POUFUSION-BETR** PP-RCT tiras y rollos.

	0.00		- 2
200	1000		000
G 1	RERIAS	EN ROL	LOS
	1 6 6 6 6		2
		DN 401	
	53.21	PN-16)	100

Dimension	Codico
	S3.2 (PN-16)
16 mm,	2000009200-0016
20 mm.	2000009200-0020
25 mm.	2000009200-0025
32 mm.	2000009200-0032

	84 (PN-12,5)
16 mm.	2000009300-0016
20 mm.	2000009300-0020
25 mm.	2000009300-0025
32 mm.	2000009300-0032
40 mm.	2000009300-0040
50 mm.	2000009300-0050
63 mm.	2000009300-0063
75 mm.	2000009300-0075
90 mm.	2000009300-0090
110 mm.	2000009300-0110
125 mm.	2000009300-0125

20	100	ŀ					:
٠ ٦	UB	EF	RIAS	EN	ROL	L C)S
	c		4 (P				100 m

Dimension	Codigo	
	84 (PN-12,5)	
16 mm.	2000009320-0016	
20 mm.	2000009320-0020	
25 mm.	2000009320-0025	
32 mm.	2000009320-0032	_

Fittings POUFUSION-BETH Fusion-Fusion PP-RC

_	Dimensión		Código	
_	Dimension		Coalgo	
	16 mm. (S 2	,5)	6100001001-9016	
	20 mm. (S 2	,5)	6100001001-9020	
	25 mm. (S 2	,5)	6100001001-9025	
	32 mm. (S 2	,5)	6100001001-9032	
	40 mm. (S 2	,5)	6100001001-9040	
	50 mm. (S 2	,5)	6100001001-9050	
	63 mm. (S 2	,5)	6100001001-9063	
	75 mm. (S 2	,5)	6100001001-9075	
	90 mm. (S 2		6100001001-9090	
	110 mm. (S 2		6100001001-9110	
	125 mm. (S 3		6100001001-1125	
	160 mm. (S 3	,2)	6100001001-9160	

Dimension	Código
20 x 16 mm, (S 2,5)	6100001001-2016
25 x 20 mm. (S 2,5)	6100001001-2520
32 x 20 mm. (S 2,5)	6100001001-3220
32 x 25 mm. (S 2,5)	6100001001-3225

Dimen	sión	Código
16 mm.	(S 2,5)	6100001001-4516
20 mm.	(S 2,5)	6100001001-4520
25 mm.	(S 2,5)	6100001001-4525
32 mm.	(S 2,5)	6100001001-4532
40 mm.	(S 2,5)	6100001001-4540
50 mm.	(S 2,5)	6100001001-4550
63 mm.	(S 2,5)	6100001001-4563
75 mm.	(S 2,5)	6100001001-4575
90 mm.	(S 2,5)	6100001001-4590
110 mm.	(S 2,5)	6100001001-5110
125 mm.	(S 3,2)	6100001001-5125
160 mm.	(S 3,2)	6100001001-5160
	16 mm. 20 mm. 25 mm. 32 mm. 40 mm. 50 mm. 63 mm. 75 mm. 90 mm. 110 mm.	20 mm. (S 2,5) 25 mm. (S 2,5) 32 mm. (S 2,5) 40 mm. (S 2,5) 50 mm. (S 2,5) 63 mm. (S 2,5) 75 mm. (S 2,5) 90 mm. (S 2,5) 110 mm. (S 2,5) 125 mm. (S 3,2)

Dimen	sión	Código
16 mm.	(S 2,5)	6100001002-0016
20 mm.	(S 2,5)	6100001002-0020
25 mm.	(S 2,5)	6100001002-0025
32 mm.	(S 2,5)	6100001002-0032
40 mm.	(S 2,5)	6100001002-0040
50 mm.	(S 2,5)	6100001002-0050
63 mm.	(S 2,5)	6100001002-0063
75 mm.	(S 2,5)	6100001002-0075
90 mm.	(S 2,5)	6100001002-0090
110 mm.	(S 2,5)	6100001002-0110
125 mm.	(S 3,2)	6100001002-1125
160 mm.	(S 3,2)	6100001002-0160

Fittings POLIFUSION-BETH Fusión-Fusión (PP-RCT)

Dimensio	in	Código
16 X 20 X 16	(S 2,5)	6100001216-2016
20 X 16 X 16	(S 2,5)	6100001220-1616
20 X 20 X 16	(S 2,5)	6100001220-2016
20 X 16 X 20	(S 2,5)	6100001220-1620
20 X 25 X 20	(S 2,5)	6100001220-2520
25 X 16 X 16	(S 2,5)	6100001225-1616
25 X 20 X 16	(S 2,5)	6100001225-2016
25 X 16 X 20	(S 2,5)	6100001225-1620
25 X 16 X 25	(S 2,5)	6100001225-1625
25 X 20 X 20	(S 2,5)	6100001225-2020
25 X 25 X 20	(S 2,5)	6100001225-2520
25 X 20 X 25	(S 2,5)	6100001225-2025
32 X 16 X 32	(S 2,5)	6100001232-1632
32 X 20 X 20	(S 2,5)	6100001232-2020
32 X 20 X 25	(S 2,5)	6100001232-2025
32 X 20 X 32	(S 2,5)	6100001232-2032
32 X 25 X 20	(S 2,5)	6100001232-2520
32 X 25 X 25	(S 2,5)	6100001232-2525
32 X 25 X 32	(S 2,5)	6100001232-2532
40 X 20 X 40	(S 2,5)	6100001240-2040
40 X 25 X 32	(S 2,5)	6100001240-2532
40 X 25 X 40	(S 2,5)	6100001240-2540
40 X 32 X 25	(S 2,5)	6100001240-3225
40 X 32 X 40	(S 2,5)	6100001240-3240
50 X 20 X 50	(S 2,5)	6100001250-2050
50 X 25 X 50	(S 2,5)	6100001250-2550
50 X 32 X 50	(S 2,5)	6100001250-3250
50 X 40 X 50	(S 2,5)	6100001250-4050
63 X 20 X 63	(S 2,5)	6100001263-2063
63 X 25 X 63	(S 2,5)	6100001263-2563
63 X 32 X 63	(S 2,5)	6100001263-3263
63 X 40 X 63	(S 2,5)	6100001263-4063
63 X 50 X 63	(S 2,5)	6100001263-5063
75 X 20 X 75	(S 2,5)	6100001275-2075
75 X 25 X 75	(S 2,5)	6100001275-2575
75 X 32 X 75	(S 2,5)	6100001275-3275
75 X 40 X 75	(S 2,5)	6100001275-4075
75 X 50 X 75	(S 2,5)	6100001275-5075
75 X 63 X 75	(S 2,5)	6100001275-6375
90 X 32 X 90	(S 2,5)	6100001290-3290
90 X 40 X 90	(S 2,5)	6100001290-4090
90 X 50 X 90	(S 2,5)	6100001290-5090
90 X 63 X 90 90 X 75 X 90	(S 2,5)	6100001290-6390
110 X 40 X 110	(S 2,5)	6100001290-7590
110 X 40 X 110	(S 2,5)	6100001211-4011
110 X 50 X 110	(S 2,5)	6100001211-5011
110 X 63 X 110	(S 2,5)	6100001211-6311 6100001211-7511
110 X 75 X 110	(S 2,5)	6100001211-7511
110 X 90 X 110 125 X 63 X 125	(S 2,5)	6100001211-9011
125 X 63 X 125 125 X 110 X 125	(S 3,2)	6100001212-6312
160 X 63 X 160	(S 3,2)	
160 X 63 X 160	(S 3,2) (S 3,2)	6100001216-6316 6100001216-1116
160 X 110 X 160	(S 3,2)	6100001216-1116
(125 × 100	(0 3,2)	0100001210-1210

ittings **POLIFUSION-BETTA** Fusión-Fusión PP-RCT

	Dimensión	Código	
	16 mm.	6100001003-0016	
	20 mm.	6100001003-0020	
	25 mm.	6100001003-0025	
	32 mm.	6100001003-0032	
	40 mm.	6100001003-0040	
	50 mm.	6100001003-0050	
	63 mm.	6100001003-0063	
	75 mm.	6100001003-0075	
	90 mm.	6100001003-0090	
	110 mm.	6100001003-0110	
	125 mm.	6100001003-1125	
ï	160 mm.	6100001003-0160	,

	20 x 16	6100001004-2016
	25 x 16	6100001004-2516
	25 x 20	6100001004-2520
	32 x 16	6100001004-3216
	32 x 20	6100001004-3220
	32 x 25	6100001004-3225
	40 x 20	6100001004-4020
	40 x 25	6100001004-4025
	40 x 32	6100001004-4032
	50 x 20	6100001004-5020
	50 x 25	6100001004-5025
_	50 x 32	6100001004-5032
61	50 x 40	6100001004-5040
	63 x 20	6100001004-6320
	63 x 25	6100001004-6325
	63 x 32	6100001004-6332
	63 x 40	6100001004-6340
	63 x 50	6100001004-6350
	75 x 32	6100001004-7532
	75 x 40	6100001004-7540
	75 x 50	6100001004-7550
	75 x 63	6100001004-7563
	90 x 40	6100001004-9040
	90 x 50	6100001004-9050
	90 x 63	6100001004-9063
	90 x 75	6100001004-9075
	110 x 40	6100001004-9140
	110 x 50	6100001004-9150
	110 x 63	6100001004-9163
	110 x 75	6100001004-9175
	110 x 90	6100001004-9190
	125 x 110	6100001004-9125
	160 x 110	6100001004-9160
	160 x 125	6100001004-9161
		l

TUBERIAS - FITTINGS - ACCESORIOS



6100003013-3212 6100003013-3234 6100003013-32210 6100003013-3210 6100003013-4114 6100003013-5112 6100003013-512 6100003013-7212 6100003013-9030 6100003013-9104

TUBERIAS - FITTINGS - ACCESORIOS

Máquinas, Dad	los Fusión y Ac	cesorios
4 4 4 4 4 4	Dimensión	Código
Abrazadera Plástica	20 mm./ 25 mm	7000002000-2520
	Dimensión	Código
100000 1000000000000000000000000000000	16 mm 20 mm. 25 mm. 32 mm. 40 mm. 50 mm. 63 mm.	7000001000-1620 7000001000-0125 7000001000-0132 7000001000-0140 7000001000-0150 7000001000-0163
	Dimensión	Código
Sellante anaerobico	50grs	7000005000-0050
	Dimensión	Códico
Trijeras corta tubos	16mm a 40mm. azul 16mm a 32mm. roja	7000002000-2042 7000002200-1632
	Dimensión	Código
tilera electrica	16mm a 40mm. con cargador	7000002200-1640

| Code |

Perforador Montura 32 700005001-3 Perforador Montura 40 700005001-4 Perforador Montura 50 700005001-5	Perforador Montura 32 7000005001-32 Perforador Montura 40 7000005001-44 Perforador Montura 50 7000005001-56	0	ensión	Código
Perforador Montura 40 7000005001-4 Perforador Montura 50 7000005001-5	Perforador Montura 40 7000005001-40 Perforador Montura 50 7000005001-50	Perforad	lorMontura 25/20	
Perforador Montura 50 7000005001-5	Perforador Montura 50 7000005001-50			
Perforador Montura 63 7000005001-6	Perforador Montura 63 7000005001-6:			
		Perfora	for Montura 63	7000005001-6

XXIV TABLAS DE UTILIDAD

Conductividad Térmica

λ	<u>Kcal</u> m ⁰Ch	BTU ft° fh	1 W °C
1 W/m °C	0,8598	0,5778	1
Kcal m °Ch	1	0,6720	1,163
BTU ft° fh	1,488	1	1,731

Flujo Térmica

Ø	1 Kcal h	1 BTU h	1 W
1 W	0,8598	3,412	1
1 Kcal h	1	3,968	1,163
1 BTU h	0,2520	1	1,731

Potencia

POTENCIA	W=J/s =Nm/s	Kcal/h	Kcal/s	HP	BTU/h	BTU/s
1 W 1 mkp 1 kcal/h 1 kcal/s HP 1 BTU/h 1 BTU/s	1 9,80665 1,16300 4186,80 745,700 0,293071 1055,06	0,859845 8,43220 1 3600 641,186 0,251996 907,185	2,38846 x 10 ⁻⁴ 2,34228 x 10 ⁻³ 1/3600 1 0,178107 6,99968 x 10 ⁻⁵ 0,251998	1,31509 x 10 ⁻² 1,55961 x 10 ⁻³ 5,61456	33,45167 3,96632 14,20595 2544,44	9,47817 x 10 ⁻⁴ 9,29491 x 10 ⁻³ 1,10231 x 10 ⁻³ 3,96832 0,706788 1/3600

Presión

Presión	Bar =10 N/m	Kp/cm=at	Torr =mm Hg	1 atm =760 Torr	lb/ft	lb/in (psi)
1 Torr 1 atm	1,01325	1,03323	760 0.359131	0,986924 0,967842 1,31579 x 10 ⁻³ 1 4,72541 x 10 ⁻⁴ 6,80459 x 10 ⁻²	2116,22 1	14,5038 14,22337 1,93368 x 10 ⁻² 14,69597 1/144

Masa

Masa	Kg	Kp s ² /m	lb	ton corta (sh.ton)	ton larga (lg.ton)
1Kg	1	0,101972	2,20462	1,10231 x 10 ⁻³	9,84206 x 10 ⁻⁴
1Kp s²/m	9,80665	1	2161996	10,80998 x 10 ⁻³	9,65177 x 10 ⁻³
1 lb	0,453592	4,62536 x 10 ⁻²	1	1/2000	4,46429 x10 ⁻⁴
1sh ton	907,18487	92,50711	2000	1	0,89286
1lb ton	1016,0471	103,60797	2240	1,12	1

Tabla Relaciones Entre Temperaturas

	T _C (°C)=	T _F (°F)=
Temperatura Celsius t _c (°C)	T _C	$\frac{9}{5}$ •(t _C + 32)
Temperatura Fahrenheit t _F (°F)	5 ₉ •(t _F 32)	t _F

XXV TABLA DE MEDIDAS Y RECOMENDACIONES

Diametro	Espesor	Espesor	Diam. inte.	Diam. inte.	Peso	Peso	TIRAS	ROLLOS
nominal	S4 (PN-12,5)	S3.2(PN 16)	S4(PN-12,5)	S3.2(PN-16)	KG x MTS	KG x MTS	METROS	METROS
mm.	mm.	mm.	mm.	mm.	S4(PN-12,5)	S3.2(PN-16)		
16	2,0	2,2	12,0	11,6	0,079	0,086	6	200
20	2,3	2,8	15,4	14,4	0,115	0,136	6	200
25	2,8	3,5	19,4	18,0	0,160	0,213	6	50
32	3,6	4,4	24,8	23,2	0,289	0,343	6	30
40	4,5	5,5	31,0	29,0	0,452	0,536	6	
50	5,6	6,9	38,8	36,2	0,703	0,841	6	
63	7,1	8,6	48,8	45,8	1,122	1,323	6	
75	8,4	10,3	58,2	54,4	1,582	1,884	6	
90	10,1	12,3	69,8	65,4	2,282	2,702	6	
110	12,3	15,1	85,4	79,8	3,398	4,052	6	
125	14	17,2	97,0	90,6	4,394	5,242	6	
160	17,9	22	124,2	116,0	7,192	8,584	6	

Norma Chilena NCh 3151/1

Durante el transporte y almacenaje se deben evitar los impactos y golpes directos sobre las tuberías, teniendo especial cuidado con los extremos de estas.

No caliente las tuberías con llama directa, para realizar curvas se debe utilizar una pistola de aire caliente.

Evite golpes en tubos y accesorios No utilice tubos accesorios dañados o con grietas.

Evitar aplastamiento de las tuberías

Procurar lugares especialmente habilitados para el almacenaje.

No apile las tuberías más de 1.5 m de altura.

Respete el tiempo de calentamiento, la temperatura de termofusión y la profundidad de inserción establecidas para una correcta Termofusión

No fusione distintos tipos de polipropileno. No haga roscas en tubos y

accesorios.

Asegurar que dados y piezas a fusionar estén completamente limpios y secos.

(Su limpiesa puede ser realizada con alcohol).

INFORMACION GENERAL

Todas las tuberias de polipropileno y fitting fabricados en POLIFUSION S.A. Son certificados en forma permanente por el Centro de Estudios Medición y Certificación y Calidad CESMEC Ltda., ISO CASCO-5 y aprobados por la SISS. (Superintendencia de Servicios Sanitarios)

Superintendencia de **Servicios Sanitarios**

ESPECIALISTAS EN TUBERIAS Y FITTINGS DE POLIPROPILENO Y PEX.

EL MEJOR SOPORTE PARA SUS PROYECTOS

SERVICIO TECNICO
Y CAPACITACION EN OBRAS

DEPARTAMENTO DE EVALUACION Y CUBICACION DE PROYECTOS

Polifición S.A..

ESPECIALISTAS EN TUBERIAS Y FITTINGS DE POLIPROPILENO Y PEX.

Camino el Otoño Nº 375 Fonos: 3875000 / 7452000 Fax : 7453000 Casilla 10165-21 Lampa - Santiago

www.polifusion.com Email: info@polifusion.cl